8-9th August, 2008 School of Materials Science & Nanotechnology,Jadavpur University
A brief review on electrochemical enzymatic
nanobiosensors
Nirmal K. Sarkar* and K. K. Chattopadhyay**
* Sodepur Chandrachur Vidyapith, Sodepur, Kolkata- 110, India
** Dept of Nano Science and Technology, Jadavpur University, Kolkata-32, India
Abstract :
The amazing and unique properties of nanoscale materials have opened up tremendous potential applications of nanomaterials in sensing biological element or bio-sequential variation in some complex organic compounds, in relation to modern medical diagnosis and treatment, food technology, environmental monitoring and some other fields. Studies of electrochemical responses via charge transfer mechanism of nanobiosensors of enzymatic in category, has been surveyed. Enzyme immobilization techniques, novel binding material, sensors with different nanoscale morphologies along with quantum dots are discussed under the frame work of electrochemical measurement principle. Nano particle based electronic signal amplification and coding strategies for bio-affinity assays are also focused in the discussion. Necessary improvement in sensitivity and specificity of sensing activity will be given stressed in this review.
Keywords: nanomaterial, biosensor, charge transfer, enzyme, quantum dot, signal sensitivity,
References:
1 Bakker E., Anal. Chem., 76, 3285 (2004).
2. Bakker E. and Qin Y., Anal. Chem., 78, 3965 (2006).
3. Li, S.; He, P.; Dong, J.; Guo, Z.; Dai, L. DNA-directed self-assembling of carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 14-15; DOI 10.1021/ja0446045; PubMed 15631425.
4. Vaseashta, A.; Dimova-Malinovska, D. Nanostructured and nanoscale devices, sensors and detectors. Sci. Tech. Adv. Mat. 2005, 6, 312-318.
5. Zhang, X.L.; Wang, J.X.; Wang, Z.; Wang, S.C. Improvement of amperometric sensor used for determination of nitrate with polypyrrole nanowires modified electrode. Sensors 2005, 5, 580-593.
6. Bakker E. and Telting-Diaz M., Anal. Chem., 74, 2781 (2002).
7. Bobacka J., Ivaska A. and Lewenstam A., Electroanalysis, 15, 366 (2003).
8. Bobacka J., Conjugated Polymer Chemical Sensors, in: Encyclopedia of Sensors, American Scientific Publishers, Vol. 2, 2006, pp. 279.
9. Granot E., Basnar B., Cheglakov Z., Katz E. and Willner I., Electroanalysis, 18, 26 (2006).
10. Hoa D.T., Suresh Kunar T.N., Punekar N.S., Srinivasa R.S., Lal R. and Contractor A.Q., Anal.Chem., 64, 2645, (1992).
11. Sakaguchi, T.; Morioka, Y.; Yamasaki, M.; Iwanaga, J.; Beppu, K.; Maeda, H.; Morita, Y.; Tamiya, E. Rapid and onsite BOD sensing system using luminous bacterial cells-immobilized chip. Biosens. Bioelectron. 2007, 22, 1345-1350; DOI 10.1016/j.bios.2006.06.008; PubMed 16846732.
12. Chen, S.M.; Chzo, W.Y. Simultaneous voltammetric detection of dopamine and ascorbic acid using didodecyldimethylammonium bromide (DDAB) film-modified electrodes. J. Electroanal. Chem. 2006, 587, 226-234; DOI 10.1016/j.jelechem.2005.11.019.
13 Eggins B., Biosensors, An Introduction, Chapter 1, Wiley & Teubner, 1996.
14 Saxena V. and Malhotra B.D., Curr. Appl. Phys., 3, 293 (2003).
15 M. Musameh, J. Wang, A. Merkoci, Y. Lin, Low-potential stable NADH
detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem.
Commun. 4 (2002) 743–746.
16 M. Dequaire, C. Degrand, B. Limoges, An electrochemical metalloimmunoassay
based on a colloidal gold label, Anal. Chem. 72 (2000)
17. Zhang, F.; Yang, S. H.; Kang, T. Y.; Cha, G. S.; Nam, H.; Meyerhoff, M. E. A rapid competitive binding nonseparation electrochemical enzyme immunoassay (NEEIA) test strip for microcystin-LR (MCLR) determination. Biosens. Bioelectron. 2007, 22, 1419-1425.
18. Zhang, F.; Cho, S. S.; Yang, S. H.; Seo, S. S.; Cha, G. Sig; Nam, H. Gold Nanoparticle-Based Mediatorless Biosensor Prepared on Microporous Electrode. Electroanalysis 2006, 18, 217-22.
19. Patolsky, F.; Wizemann, Y.; Willner J. Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem. Int. Ed. 2004, 43, 2113-2117.
20. Willner, B.; Katz, E.; Willner, I. Electrical contacting of redox proteins by nanotechnological means. Curr. Opin. Biotech. 2006,17, 589-596.
21. Kerman, K.; Nagatani, N.; Chikae, M.; Yuhi, T.; Takamura, Y.; Tamiya. E. Label-free electrochemical immunoassay for the detection of human chorionic gonadotropin hormone. Anal. Chem. 2006, 78, 5612-5616.5521–5528.
22 E. Baker, Y. Qin, Electrochemical sensors, Anal. Chem. 78 (2006) ,3965–3984.
23 K.K. Jain, Nanotechnology in clinical laboratory diagnostics, Clin. Chim. Acta 358 (2005) 37–54.
24 J. Wang, Nanomaterial-based electrochemical biosensors, Analyst 130 (2005) 421–426.
25 F. Patolsky, G. Zheng, C.M. Liebner, Nanowire-based biosensors, Anal. Chem. 78 (2006) 4260–4269.
26 G.G. Wildgoose, C.E. Banks, H.C. Leventis, R.G. Compton, Chemically modified carbon nanotubes for use in electroanalysis, Microchim. Acta 152 (2006) 187–214.
27 P.A. He, Y. Xu, Y.Z. Fang, Applications of carbon nanotubes in electrochemical DNA biosensors, Microchim. Acta 152 (2006) 175–186.
28 J. Wang, Carbon-nanotube based electrochemical biosensors: a review, Electroanalysis 17 (2005) 7–14.

Custom Search